Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(3): 1004-1016, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38206771

RESUMO

Molecular docking is a widely used technique for leveraging protein structure for ligand discovery, but it remains difficult to utilize due to limitations that have not been adequately addressed. Despite some progress toward automation, docking still requires expert guidance, hindering its adoption by a broader range of investigators. To make docking more accessible, we developed a new utility called DockOpt, which automates the creation, evaluation, and optimization of docking models prior to their deployment in large-scale prospective screens. DockOpt outperforms our previous automated pipeline across all 43 targets in the DUDE-Z benchmark data set, and the generated models for 84% of targets demonstrate sufficient enrichment to warrant their use in prospective screens, with normalized LogAUC values of at least 15%. DockOpt is available as part of the Python package Pydock3 included in the UCSF DOCK 3.8 distribution, which is available for free to academic researchers at https://dock.compbio.ucsf.edu and free for everyone upon registration at https://tldr.docking.org.


Assuntos
Benchmarking , Proteínas , Simulação de Acoplamento Molecular , Estudos Prospectivos , Proteínas/química , Ligantes , Ligação Proteica
2.
Cureus ; 15(9): e44574, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37790044

RESUMO

Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. G. lucidum spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of G. lucidum spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of G. lucidum spores were included in this review. The review found that G. lucidum spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. G. lucidum sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. G. lucidum extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of G. lucidum should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. High doses of G. lucidum spore extract should be used with caution as there was a concern about the increase in CA.

3.
J Chem Inf Model ; 63(4): 1166-1176, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36790087

RESUMO

Purchasable chemical space has grown rapidly into the tens of billions of molecules, providing unprecedented opportunities for ligand discovery but straining the tools that might exploit these molecules at scale. We have therefore developed ZINC-22, a database of commercially accessible small molecules derived from multi-billion-scale make-on-demand libraries. The new database and tools enable analog searching in this vast new space via a facile GUI, CartBlanche, drawing on similarity methods that scale sublinearly in the number of molecules. The new library also uses data organization methods, enabling rapid lookup of molecules and their physical properties, including conformations, partial atomic charges, c Log P values, and solvation energies, all crucial for molecule docking, which had become slow with older database organizations in previous versions of ZINC. As the libraries have continued to grow, we have been interested in finding whether molecular diversity has suffered, for instance, because certain scaffolds have come to dominate via easy analoging. This has not occurred thus far, and chemical diversity continues to grow with database size, with a log increase in Bemis-Murcko scaffolds for every two-log unit increase in database size. Most new scaffolds come from compounds with the highest heavy atom count. Finally, we consider the implications for databases like ZINC as the libraries grow toward and beyond the trillion-molecule range. ZINC is freely available to everyone and may be accessed at cartblanche22.docking.org, via Globus, and in the Amazon AWS and Oracle OCI clouds.


Assuntos
Zinco , Ligantes , Bases de Dados Factuais , Conformação Molecular , Simulação de Acoplamento Molecular
4.
J Colloid Interface Sci ; 607(Pt 2): 1786-1795, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600342

RESUMO

HYPOTHESIS: Polymer nanoparticles (NPs) have a very high potential for applications notably in the biomedical field. However, synthetic polymer NPs cannot yet concurrence the functionalities of proteins, their natural counterparts, notably in terms of size, control over internal structure and interactions with biological environments. We hypothesize that kinetic trapping of polymers bearing oppositely charged groups in NPs could bring a new level of control and allow mimicking the surfaces of proteins. EXPERIMENTS: Here, the assembly of mixed-charge polymer NPs through nanoprecipitation of mixtures of oppositely charged polymers is studied. Two series of copolymers made of ethyl methacrylate and 1 to 25 mol% of either methacrylic acid or a trimethylammonium bearing methacrylate are synthesized. These carboxylic acid or trimethylammonium bearing polymers are then mixed in different ratios and nanoprecipitated. The influence of the charge fraction, mixing ratio of the polymers, and precipitation conditions on NP size and surface charge is studied. FINDINGS: Using this approach, NPs of less than 25 nm with tunable surface charge from +40 mV to -40 mV are assembled. The resulting NPs are sensitive to pH and certain NP formulations have an isoelectric point allowing repeated charge reversal. Encapsulation of fluorescent dyes yields very bright fluorescent NPs, whose interactions with cells are studied through fluorescence microscopy. The obtained results show the potential of nanoprecipitation of oppositely charged polymers for the design of NPs with precisely tuned surface properties.


Assuntos
Nanopartículas , Polímeros , Corantes Fluorescentes , Microscopia de Fluorescência , Tamanho da Partícula , Propriedades de Superfície
5.
J Chem Inf Model ; 61(2): 699-714, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33494610

RESUMO

Enrichment of ligands versus property-matched decoys is widely used to test and optimize docking library screens. However, the unconstrained optimization of enrichment alone can mislead, leading to false confidence in prospective performance. This can arise by over-optimizing for enrichment against property-matched decoys, without considering the full spectrum of molecules to be found in a true large library screen. Adding decoys representing charge extrema helps mitigate over-optimizing for electrostatic interactions. Adding decoys that represent the overall characteristics of the library to be docked allows one to sample molecules not represented by ligands and property-matched decoys but that one will encounter in a prospective screen. An optimized version of the DUD-E set (DUDE-Z), as well as Extrema and sets representing broad features of the library (Goldilocks), is developed here. We also explore the variability that one can encounter in enrichment calculations and how that can temper one's confidence in small enrichment differences. The new tools and new decoy sets are freely available at http://tldr.docking.org and http://dudez.docking.org.


Assuntos
Benchmarking , Ligantes , Modelos Moleculares , Estudos Prospectivos , Ligação Proteica
6.
J Chem Inf Model ; 60(12): 6065-6073, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33118813

RESUMO

Identifying and purchasing new small molecules to test in biological assays are enabling for ligand discovery, but as purchasable chemical space continues to grow into the tens of billions based on inexpensive make-on-demand compounds, simply searching this space becomes a major challenge. We have therefore developed ZINC20, a new version of ZINC with two major new features: billions of new molecules and new methods to search them. As a fully enumerated database, ZINC can be searched precisely using explicit atomic-level graph-based methods, such as SmallWorld for similarity and Arthor for pattern and substructure search, as well as 3D methods such as docking. Analysis of the new make-on-demand compound sets by these and related tools reveals startling features. For instance, over 97% of the core Bemis-Murcko scaffolds in make-on-demand libraries are unavailable from "in-stock" collections. Correspondingly, the number of new Bemis-Murcko scaffolds is rising almost as a linear fraction of the elaborated molecules. Thus, an 88-fold increase in the number of molecules in the make-on-demand versus the in-stock sets is built upon a 16-fold increase in the number of Bemis-Murcko scaffolds. The make-on-demand library is also more structurally diverse than physical libraries, with a massive increase in disc- and sphere-like shaped molecules. The new system is freely available at zinc20.docking.org.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados Factuais , Ligantes
7.
Tetrahedron Lett ; 58(40): 3894-3896, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28966405

RESUMO

cis-ß-Bromostyrene derivatives were synthesized stereospecifically from cinnamic acids through ß-lactone intermediates. The synthetic sequence did not require the purification of the ß-lactone intermediates although they were found to be stable and readily purified in most cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...